If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-132=0
a = 1; b = 24; c = -132;
Δ = b2-4ac
Δ = 242-4·1·(-132)
Δ = 1104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1104}=\sqrt{16*69}=\sqrt{16}*\sqrt{69}=4\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{69}}{2*1}=\frac{-24-4\sqrt{69}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{69}}{2*1}=\frac{-24+4\sqrt{69}}{2} $
| 7-2u=25 | | t+2/3=3 | | 4(a+6)=36 | | 8c-2=2c-12 | | -75x+530+70=125x | | a-6/3=5 | | 10,000+5000x=500(2x) | | 10.000+5000x=500(2x) | | 8^(-5a)-5=53 | | 2x+9-7x=5.15 | | 10,000+5000x=500(x)^2 | | 10,000+5000x=500(2)^2 | | 4(x+3)-5(x-5)=0 | | 75x+530+70=125x | | 4(x+3-5(x-5)=0 | | 2x+5=-6x-7 | | 6x+17=5x-17 | | 2x+5+7x+4+5x+3=180 | | X³-2x+0.5=0 | | 5^x=2x+25 | | x+(x+2)=197 | | X3-2x+0.5=0 | | (7n+18)+(4n+8)=180 | | m/5-24=422 | | (7n+18)=2n | | 20n+50=90 | | 3x+x-1=5 | | x/106=0.16 | | x/106=16 | | 17x=-14x | | Y/4-15.2=8x | | 15*20=26*x |